李连鸣简介

发布者:杨婷婷发布时间:2022-10-12浏览次数:88

个 人 简 历

  

基本资料

·姓名: 李连鸣

·性别:男

·出生年月:

·民族: 汉

·职称: 教授、博导

·学历: 博士

·职务:信息科学与工程、微电子等学院导师

·联系电话:

·E- mail Lianming.li@seu.edu.cn

个人主页:https://radio.seu.edu.cn/2018/0423/c19937a422707/page.htm

个人简历

李连鸣:博士、教授、博士生导师、紫金山实验室课题负责人

2001年本科毕业于东南大学物理系,后保送至东南大学无线电工程系攻读硕士学位。硕士毕业后留校任教。2006年赴集成电路领域世界一流的比利时鲁汶大学MICAS(微电子及传感器)小组,跟随Michiel Steyaert教授(IEEE固态电路协会50年及60年来十大贡献者之一)Patrick Reynaert教授攻读博士学位。作为该组高频毫米波芯片方向的第一位博士生成员,从事CMOS毫米波电路设计,参与了欧盟多项重大项目的研究工作。现为东南大学移动通信国家重点实验室教授。

2011年回国至今,作为项目负责人及技术负责人,面向探测感知与通信应用,承担国家重点研发项目、国家重大专项、863重大课题、国家自然基金等重要纵横向项目30余项,在毫米波太赫兹关键电路、收发系统芯片、通信及雷达用时钟电路、高性能模拟电路、先进高密度高频封装、阵列天线等方面开展了深入研究。迄今,在IEEE 固态电路期刊(JSSC)、微波技术汇刊(T-MTT)、大规模电路汇刊(T-VLSI)、电路与系统汇刊(T-CAS)、传感器期刊( IEEE Sens. J.)、天线与传播汇刊(TAP)、太赫兹科学与技术汇刊(T-THz)、模块封装与制造汇刊(T-CPMT)、IEEE 固态电路会议(ISSCC)、微波会议(IMS)等电路、微波、天线及封装领域重要期刊与会议发表论文100余篇。

其所在团队,2011年从零开始,两年内完成了国内第一块基于CMOS工艺的毫米波射频收发系统,相关成果入选国家“十二五”科技创新成就展。

【 研究方向

1、射频与模拟集成电路与系统设计;

2、混合信号、超大规模高速数字集成电路与系统设计;

3、通信感知一体化集成电路设计;

4、先进封装、天线芯片一体化微系统设计;

5、通信感知一体化系统设计与实现。

欢迎品学兼优、富有追求、具有创新精神和科研能力强的同学攻读博士、硕士学位。欢迎优秀本科同学加入课题组参与科研训练。

电子邮箱:Lianming.Li@seu.edu.cn


部分科研项目

项目名称

项目类别

工作类别


Tbps毫米波通信核心芯片与系统研发

国家重点研发项目

应用基础研究

项目负责人

基于R15支持毫米波的5G终端基带芯片和射频芯片工程样片研发

国家科技重大专项

应用基础研究

技术负责人

面向通信-雷达应用的可配置毫米波锁相环系统

国家自然科学基金项目

应用基础研究

项目负责人

CMOS太赫兹信号源相位噪声与输出功率提升理论与技术研究

国家自然科学基金项目

应用基础研究

项目负责人

60GHz 射频CMOS芯片与模块研制

863重大课题

应用基础研究

技术负责人

毫米波和太赫兹总体技术与高速基带信号处理技术研究

863重大课题

应用基础研究

技术负责人




部分研究成果

[1] L. Lu, X. Ma,Y. Liang, Z. Liu, X. Fan, L. Li, A 60 GHz Hybrid FMCW-Doppler Radar for Vibration Detection with a Robust I/Q Calibration Method,IEEE Sensors Journal, accepted.  

[2] Y. Wang, H. Duan, L. He, D. Cheng, X. Wu, D. Wang, P. Reynaert, L. Li, A 39-GHz High Image-Rejection Up-Conversion Mixer in 65-nm CMOS for 5G Communication, IEEE Transactions on Circuits and Systems, accepted.

[3] X. Zhang, X. Niu,Q. Chen,X. Chen, D. Cheng,J. Feng,J. Feng, L. Li, A 39-GHz Phase-Inverting Variable Gain Power Amplifier in 65-nm CMOS for 5G Communication, IEEE Microwave and Wireless Components Letters, accepted.

[4] Z. Liu, H. Xia, H. Liu, L. Li, Slow Wave Gap Waveguide With Bandpass Filtering Functionality, IEEE Microwave and Wireless Components Letters, 2022.8, 32(8).

[5] D. Cheng, X. Chen, Q. Chen, L. Li, B. Sheng, Design of an Ultra-Compact 60-GHz Bi-Directional Amplifier in 65-nm CMOS, IEEE Microwave and Wireless Components Letters, 2022.4, 32(4).

[6] X. Wu, L. He, L. Li, A High-Speed Complementary Current-Mode Gm-C Filter, IEICE ELECTRONICS EXPRESS, 2022. 3.

[7] L. LI, L. HE, X. WU, X. NIU, C. WAN, L. KANG, X. JIA, L. ZHANG, Q.n ZHAO, X. TU, Wideband cryogenic amplifier for a superconducting nanowire single-photon detector, Frontiers of Information Technology & Electronic Engineering, 2021.12, 22(12): 1666-1676.

[8] T. Zhang, Z. Zhu, X. Ma, H. Xia, L. Li, T. J. Cui, A W -Band Integrated Tapered Array Antenna With Series Feed for Noncontact Vital Sign Detection, IEEE Transactions on Antennas and Propagation, 2021.6, 69(6): 3234-3242.

[9] H. Xia, J. Hu, T.Zhang, L. Li, F. Zheng, Integrated 60-GHz miniaturized wideband metasurface antenna in a GIPD process, Frontiers of Information Technology & Electronic Engineering, 2020.1, 21(1):174-181.

[10] X. Ma, Y. Wang, L. Lu, X. Zhang, Q. Chen, X. You, J. Lin, L. Li, Design of a 100-GHz Double-Sideband Low-IF CW Doppler Radar Transceiver for Micrometer Mechanical Vibration and Vital Sign Detection, IEEE Transactions on Microwave Theory and Techniques (T-MTT), 2020.7, 68(7): 2876-2890.

[11] Y. Fu, L. Li, Y. Liao, X. Wang, Y., Shi, D. Wang, A 32-GHz Nested-PLL-Based FMCW Modulator With 2.16-GHz Bandwidth in a 65-nm CMOS Process, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020.7, 28(7): 1600 - 1609.

[12] Y. Fu; L. Li; X. Wang; D.Wang; X. Wu, A 31.5-to-40.5 GHz Injection-locked CMOS Frequency Tripler with Injection-Current Enhancement Technique,IEICE ELECTRONICS EXPRESS, 2020.4, 17(7): 1-5.

[13] L. He; L. Li; X. Niu; H. Xia; M. Xie; X. Wu; L. Zhang; L. Kang; Z. Wang, A Low-Power, Inductorless Wideband Cryogenic Amplifier for Superconducting Nanowire Single Photon Detector. IEEE Transactions on Applied Superconductivity, 2019.9, 29(6): 1~6.

[14] Y. Fu; L. Li;  D. Wang; X. Wang; L. He, 28-GHz CMOS VCO With Capacitive Splitting and Transformer Feedback Techniques for 5G Communication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019.9, 27(9): 2088 – 2095.

[15] Y. Chai; L. Li; T. Cui, Design of a 60-GHz receiver front-end with broadband matching techniques in 65-nm CMOS, IEICE Electronics Express, 2018.12, 15(24).

[16] J. ZhouL. MenC. WanP. XiaoC. JiangX. TuX. JiaK. LinL. LiC. JianP. WuLow-Noise Readout Integrated Circuit for Terahertz Array Detector, IEEE Transactions ON Terahertz Science And Technology, 2018,5, 3: 350–56.

[17] T. Zhang; L. Li; Z. Zhu; T. J. Cui, A Broadband Planar Balun Using Aperture-Coupled Microstrip-to-SIW Transition, IEEE Microwave and wireless components letters, 2019.8, 29(8):532-534.

[18] X. Ma; L. Li; S. Ming; X. You; J. Lin, Envelope Detection for an ADC-Relaxed Double-Sideband Low-IF CW Doppler Radar, IEEE Transactions on Microwave Theory & Techniques,2018.12, 66(12):5833-5841.

[19] T. Zhang ; L. Li ; H. Xia ; X. Ma ; T. J. Cui, A Low-Cost and High-Gain 60-GHz Differential Phased Array Antenna in PCB Process, IEEE Transactions on Components, Packaging and Manufacturing Technology, July 2018.7,8(7):1281-1291.

[20] T. Zhang; L. Li; T. Cui, High-gain low-cost broadband 60 GHz differential integrated patch array antennas with wire-bonding packaging and on-board compensation network, IET Microwaves, Antennas & Propagation, 2017.6,11(7):971-975.

[21] X. Wu; L. He; L. Li, A High-Speed TIA Based Programmable Broadband Complex Filter, IEICE Electronics Express, 2019.12, 16(23).

[22] L. Li; D.g Wang; X. Niu; Y. Chai; L.i Chen; L. He; X. Wu; F. Zheng; T. Cui; X. You, mmWave communications for 5G: implementation challenges and advances, Science China-information sciences2018.1, 61(2)021301-1~021301-19.

[23] G. Yue; Z. Wang; L. Chen; L. Cheng; J. Tang; X. Zou; Y. Zeng; L. Li, Demonstration of 60 GHz Millimeter-Wave Short-Range Wireless Communication System at 3.5 Gbps over 5 m Range, Science China Information Sciences, 2017.8, 60(8):1-6 .

[24] Y. Chai ; X. Niu ; L. He ; L. Li ; T. J. Cui, “A 60-GHz CMOS Broadband Receiver With Digital Calibration, 20-to-75-dB Gain, and 5-dB Noise Figure,” IEEE Transactions on Microwave Theory and Techniques, 2017.10, 65(10): 3989~4001.

[25] T. Zhang; L. Li; M. Xie ; H. Xia ; X. Ma ; T. J. Cui, Low-Cost Aperture-Coupled 60-GHz-Phased Array Antenna Package With Compact Matching Network, IEEE Transactions on Antennas and Propagation, 2017.12,65(12): 6355 - 6362 .

[26] L. Li; P. Reynaert.; M. Steyaert, A 60-GHz CMOS VCO Using Capacitance-Splitting and Gate–Drain Impedance-Balancing Techniques, IEEE Transactions on Microwave Theory and Techniques,2011.2,59(2):406-413.

[27] L. Li; P. Reynaert.; M. Steyaert, Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank, IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009.7, 44(7):1950-1958.